
Lumen® Edge Private
Cloud with VMware
Tanzu™

For Developers

Services not available everywhere. Lumen may change, cancel or substitute products and services, or vary them by service area at its sole discretion without notice.
©2022 Lumen Technologies. All Rights Reserved.

Lumen® Edge Private Cloud with VMware Tanzu™

For Developers

Contents

Containers and Kubernetes: Why developers should careContainers and Kubernetes: Why developers should care

 Who should read this book?

Why containers?Why containers?

A Kubernetes primerA Kubernetes primer

 Kubernetes controllers

 Operators tailor Kubernetes to application needs

 Why do developers like Kubernetes?

Kubernetes: A developer’s checklistKubernetes: A developer’s checklist

 Kubernetes advantages for developers

 How to develop for Kubernetes

 How to create a build pipeline

 How to manage a Kubernetes cluster in production

 The right amount of visibility and control

 Should I move my application to Kubernetes?

Migrating applications to KubernetesMigrating applications to Kubernetes

 Application audit

 Containerizing your application

 Breaking your application into pieces

 Migration

 Management

 How to get started

33

3

44

44

5

5

6

77

7

7

8

9

10

11

1111

11

11

12

12

13

13

Best practices for cloud native appsBest practices for cloud native apps

 Find the right tools Find the right tools

 Use the patterns Use the patterns

 Take full advantage of operators Take full advantage of operators

 Engage with the community Engage with the community

What should I do next?What should I do next?

1414

14

14

14

14

1515

2

Lumen® Edge Private Cloud with VMware Tanzu™

For Developers

Your company’s success increasingly depends on the
ability of development teams to deliver digital services and
software more quickly and with higher quality—and on the
ability to operate applications and services reliably at
scale. You have likely already discovered that traditional
methods don’t deliver new applications quickly enough or
achieve the necessary velocity. For most teams, the answer
is agile software development methods (sometimes called
DevOps) and cloud native technologies, including containers
and Kubernetes.

If you’re a software developer, it’s likely that you’re already
somewhat familiar with these technologies. You might have
kicked the tires, you might have done your first project, or
you might just be trying to figure out how to learn enough
to get started.

Cloud native technologies are new and evolving fast. A
whole ecosystem of solutions and services is emerging to
address a wide variety of use cases and needs. There’s a lot
for everyone to learn, and it’s likely to stay that way for quite
a while.

The journey won’t always be an easy one. Kubernetes
introduces additional complexity to development and
production environments. But the cost of moving to
Kubernetes is less than the value you get from it. That’s
the whole reason that Kubernetes has grown in popularity
so quickly. The new tooling and the learning curve are
worthwhile because the efforts you make now will
save you time down the road.

Containers and Kubernetes:
Why developers should care

No two development organizations are alike, and titles
can vary widely from one to the next. However, this
book is targeted to people that focus on application
development. If that sounds like you, then read on.

However, we also think that infrastructure engineers,
systems engineers, and site reliability engineers (SRE)—
anyone responsible for the infrastructure on which
Kubernetes will run—can benefit, too.

Who should read this book?

3

There’s no lack of resources out there. You might even say
that’s part of the problem. This book will help you think
more clearly about software development for Kubernetes,
whether you’re porting existing applications or doing new
cloud native development.

When we talk to software and application engineers, there’s
frustration that there’s no short reference that pulls together
everything they need to know to get started. This eBook is
intended to fill that gap, helping you map your journey to
containers and Kubernetes.

Lumen® Edge Private Cloud with VMware Tanzu™

For Developers

Why containers?

One of the big challenges that enterprise software teams
face is difficulty moving applications from one environment
to another. You may need to move an enterprise application
from your data center to the public cloud, but the
effort necessary to refactor the application can make it
impossible to justify. This is where containers come into
play. By encapsulating all of an application’s dependencies,
containers make applications much more portable.

A container can move from a developer’s laptop to QA to
production—or from one cloud environment to another—
without requiring any changes to the container, and without
hardware and software reconfigurations in the target
environment. For developers, this translates to greater
agility and efficiency with less effort. You spend less time
reworking existing code to run in new environments and
more time on new applications and features.

In large part, the shift to containers is being driven by
developers at a grassroots level, and containers are
becoming an essential part of cloud native development,
microservices architecture and DevOps.

A Kubernetes Primer

Container environments tend to change more rapidly than
VM environments. Having a way to manage containerized
applications effectively is an essential element of cloud
native and microservices architecture. Kubernetes has
emerged as the leading solution for orchestrating and
managing containerized applications.

Containers encapsulate an application in a form
that’s portable and easy to deploy. Containers
can run on any compatible system—in any
cloud—without changes. Containers consume
resources efficiently, enabling high density and
utilization.

Kubernetes makes it possible to deploy and
run complex applications requiring multiple
containers by clustering physical or virtual
resources for application hosting. Kubernetes
is extensible, self-healing, scales applications
automatically, and is inherently multi-cloud.

Microservices architecture breaks down an
application into multiple component services,
enabling greater parallelism during both
development and execution.

4

The components of Kubernetes play off each other to
coordinate activities and react to events like musicians
playing jazz. At its core, Kubernetes is a database with some
interesting features layered on top of it. These features
enable a set of Controllers that each implement specific
capabilities and work together to produce the end result.
Kubernetes components can be ripped out and replaced to
extend the system and adapt it to new requirements and
environments.

Lumen® Edge Private Cloud with VMware Tanzu™

For Developers

Figure 1 shows the parts of a typical Kubernetes system. The
core of the system is the database, etcd. The state of the
cluster is stored there (and only there). In front of etcd is the
API Server. Nothing else in Kubernetes talks to etcd directly.
The API Server exposes a RESTful interface and provides
the services necessary in a distributed system.

The Scheduler and the Controller Manager implement most
of the orchestration logic of Kubernetes. Together, etcd, the
API Server, Scheduler and Controller Manager make up the
Kubernetes control plane; they can run on a single node
or across multiple nodes for availability. Worker nodes make
up the data plane of Kubernetes; each worker node runs
the container runtime (Docker in the diagram) and a local
daemon called the Kubelet that communicates with the API
Server.

5

API ServerAPI Server
etcdetcd

ControllerController
ManagerManagerSchedulerScheduler

MasterMaster

KubeletKubelet DockerDocker

KubeletKubelet DockerDocker

NodeNode

NodeNode

Kubernetes controllers

Kubernetes Controllers ensure that the observed state of
the cluster is as close as possible to the desired state. Each
Controller monitors its configuration, stored as a resource
in the API Server. It then looks at the state of the world and
tries to make the state of the world match its configuration.
If a Controller can’t fully achieve the desired state, it retries.
Controllers are both patient and diligent, resulting in a
very stable distributed system pattern that is selfhealing.
If something goes wrong, a Controller will work to fix it.
If the desired state changes while a Controller is working,
it changes course and works toward the new desired
state. Controllers react to each other very quickly, making
Kubernetes extremely responsive. The actions of the system
adapt to the state of the world in real time.

Operators tailor Kubernetes to
application needs

Kubernetes Custom Resource Definitions (CRD) provide a
way to extend the resources the API Server can manage.
CRD is usually paired with a custom Controller called an
Operator.

Operators allow you to encapsulate domain-specific
knowledge for a specific application. You can think of this as
embodying the knowledge and logic that might traditionally
be captured in run books. By automating application-
specific tasks that otherwise have to be done manually,
Operators allow you to more easily deploy and manage
applications on Kubernetes. The opensource Operator
Framework provides the necessary tools to facilitate
Operator creation.

Figure 1. The parts of a typical Kubernetes system

Lumen® Edge Private Cloud with VMware Tanzu™

For Developers

ww w

ww w

Resilience. Kubernetes is designed to be
inherently resilient. You declare the desired state,
and Kubernetes works in the background to
maintain that state and recover from failures.

Efficiency. Kubernetes makes your team more
efficient. Once you get through your first project,
building and piecing together applications will
become comparatively easy for your team,
enabling you to learn through trial and error.

Repeatability. With containers and Kubernetes,
you can ensure that the application configuration
running in one cluster is identical to the
configuration running in another. Kubernetes
makes it possible to run instances of the same
application across multiple environments with
minimum effort.

6

Flexibility. Almost any type of application can be
run inside a container regardless of the language
it’s written in. It’s easy to switch between
programming frameworks and deployment
platforms.

Visibility. You can increase observability and gain
greater insight into how an application can be
improved.

Building block approach. With Kubernetes, you
can package, platforms, systems, and applications
into reusable building blocks. It’s an easy solution
for making development, testing, and production
environments consistent.

Why do developers like Kubernetes?

Lumen® Edge Private Cloud with VMware Tanzu™

For Developers

Kubernetes: A developer’s
checklist

If you’re a developer learning about Kubernetes, there are
three things you’re probably most concerned with. The
API Server exposes a RESTful interface and provides the
services necessary in a distributed system.

• How do I develop for Kubernetes?

• How do I create a build pipeline?

• How do I manage a Kubernetes cluster once my
application is in production?

This section serves as a checklist for how to get started in
these “big three” areas.

How to develop for Kubernetes

Developing for Kubernetes is conceptually simple: You
need a way to develop your application, containerize it and
then run it on Kubernetes. Each of these steps is easy to
understand, and if you’re motivated, you can accomplish
all of the steps yourself by writing a Bash script, creating a
makefile, etc. Many organizations have done it this way.

However, there are a number of open-source tools that
make developing for Kubernetes easier and more efficient.
These tools automate the local development workflow
so that you can code and test applications more quickly,

7

either on your local machine or, in some cases, on a remote
development cluster. Consider choosing one of these tools
as your entry point for developing on Kubernetes.

These are not the only tools available for Kubernetes
development, but these three are a good place to start.

• More productive and happier development teams

• Fewer impediments to development and deployment

• Greater velocity

Kubernetes advantages for developers

The Ultimate Guide for Local Development on
Kubernetes: Draft vs. Skaffold vs. Garden.io

Guide to Cloud Native DevOps

Learn More
1. Build your 1. Build your

applicationapplication
2. Containerize it2. Containerize it

3. Run it on 3. Run it on

KubernetesKubernetes

Draft Website Docs GitHub Developer: Azure

Skaffold Website Docs GitHub Developer: Google

Garden Website Docs GitHub Developer: Garden

https://medium.com/containers-101/the-ultimate-guide-for-local-development-on-kubernetes-draft-vs-skaffold-vs-garden-io-26a231c71210
https://medium.com/containers-101/the-ultimate-guide-for-local-development-on-kubernetes-draft-vs-skaffold-vs-garden-io-26a231c71210
https://thenewstack.io/ebooks/devops/cloud-native-devops-2019/
https://draft.sh/
https://github.com/Azure/draft/tree/master/docs
https://github.com/Azure/draft
https://skaffold.dev/
https://skaffold.dev/docs/
https://github.com/GoogleContainerTools/skaffold
https://garden.io/
https://docs.garden.io/
https://github.com/garden-io/garden

Lumen® Edge Private Cloud with VMware Tanzu™

For Developers

How to create and build pipeline

If you’ve been a software developer for a while, especially as
part of an agile development team, you’re probably familiar
with the concepts of continuous integration and continuous
delivery (CI/CD). The basic idea is that CI/CD software
creates an automated pipeline to integrate, test and deploy
code changes.

A recent survey of developers highlighted the importance
of automation and CI/CD for organizations as they move

8

to a cloud native, microservices architecture. However, the
survey also found a very low level of automation for the CI/
CD process in most companies. Almost 40% of respondents
reported that less than 10% of the process was automated
and lack of automation was a major inhibitor to faster code
deployment.

CI/CD tools are a key part of developing software to run on
Kubernetes. Existing CI/CD tools like Jenkins can also be
used in Kubernetes environments, and there are newer tools
emerging specifically for Kubernetes.

Kubernetes advantages for developers

Jenkins: The most widely deployed CI/CD
tool; a Kubernetes plugin supports CI/CD for
Kubernetes

Website

Docs

Download

Website

Docs

GitHub

Bazel: A general-purpose, open-source tool
for building and testing software, developed
and used by Google internally

Kubernetes advantages for developers

Jenkins X: A more opinionated version of
Jenkins specifically for Kubernetes

Website

Docs

GitHub

Website

Docs

Travis CI: Simple, cloud-based CI/CD

Website

Docs
GitHub

Flux: CI/CD specifically for git version
control repositories

https://www.jenkins.io/
https://www.jenkins.io/doc/
https://www.jenkins.io/download/
https://bazel.build/
https://docs.bazel.build/versions/0.25.0/bazel-overview.html
https://github.com/bazelbuild/bazel
https://jenkins-x.io/
https://jenkins-x.io/documentation/
https://github.com/jenkins-x
https://www.travis-ci.com/
https://docs.travis-ci.com/
https://fluxcd.io/legacy/flux/
https://fluxcd.io/legacy/flux/
https://github.com/fluxcd/flux
https://fluxcd.io/legacy/flux/

Lumen® Edge Private Cloud with VMware Tanzu™

For Developers

How to manage a Kubernetes
cluster in production

A final thing that software engineers need to understand
is how to exert control over an application running on a
Kubernetes cluster in production. The importance of this
can depend somewhat on how your team is organized, but
as a rule, developers should understand the basics and be
able to define how an application is deployed and managed.

As you saw earlier, Kubernetes enables you to create
custom Operators that encapsulate the logic necessary
for important application management operations, like
deploying application instances, scaling the application,
upgrading and so on. Depending on the application, an
Operator is something you may want to consider investing
effort in. You may also find that Operators have already
been created for services you may use in conjunction with
your application, such as service meshes and databases.

Infrastructure-level management is an area of rapid
evolution for Kubernetes. Cluster API is a Kubernetes
project to bring declarative, Kubernetes-style APIs to
cluster creation, configuration and management. It provides
optional, additive functionality on top of core Kubernetes.
VMware is actively contributing to the development of a
Kubernetes Cluster API.

One of the goals is to provide a way to let developers
declaratively define what a cluster should look like. For
example, using the Cluster API, you might declare that you
want seven servers running in your Kubernetes cluster. If
you later decide that you want eight servers running, you
use the Cluster API to change the number to eight and it
will automatically spin up another virtual machine, applying
Kubernetes logic to infrastructure. If one of those servers

9

fails, Kubernetes automatically spins up a new one to take
its place, using self-healing to return to the desired state.
To make Cluster API work for a particular type of
environment, you need a provider for that environment.
Provider implementations are already available for major
public clouds, as well as VMware vSphere. GitHub has a list
of many of the available providers.

https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://github.com/kubernetes-sigs/cluster-api/blob/main/README.md#provider-implementations
https://github.com/kubernetes-sigs/cluster-api/blob/main/README.md#provider-implementations

Lumen® Edge Private Cloud with VMware Tanzu™

For Developers

The right amount of visibility and control

If your organization is going cloud native, visibility and
control are essential. VMware surveyed almost 400 IT and
technology decision makers and found:

58% wanted greater visibility into performancewanted greater visibility into performance11

65% needed better access to audit logs and forensicsneeded better access to audit logs and forensics11

The ability to orchestrate efforts across multiple clouds is
the number one driver for Kubernetes and that requires
visibility and control across teams and clusters.

What parts of your application environment are currently
opaque? Keep visibility in mind as you choose K8s tooling.

1  VMware customer data 10

Lumen® Edge Private Cloud with VMware Tanzu™

For Developers

Migrating applications to
Kubernetes

For many of us, one of the first projects we’re asked to take
on is moving a large enterprise application to Kubernetes.
Every enterprise has monolithic applications, often written
in Java or PHP, that are hard to maintain and manage. The
first question you have to ask yourself is whether to move
the application at all. (See sidebar.) Assuming the answer
is yes, the process proceeds through a number of stages:
application audit, containerizing your app, breaking your
app into pieces, migration and management.

Application audit

Once you’ve made the decision to migrate, the first step is a
careful audit of the application to make sure you know what
you’re dealing with. (You may learn things that make you
rethink your migration decision.)

Here are the important questions to ask:

• • What are the dependencies for this application? What are the dependencies for this application? The
list of things that will break your monolithic application
if they suddenly go away can often be quite surprising.
Can all the necessary pieces be migrated?

• • Does the application have configuration files? Does the application have configuration files? Where are
they kept? Are they stored on the system? How do they
get changed?

• • Does your application make assumptions about the OS Does your application make assumptions about the OS
and hardware it’s running on? and hardware it’s running on? Your existing software
may include hardcoded assumptions about underlying
hardware and software that aren’t documented.

11

Containerizing your application

There are a lot of tools that can help with the process of
containerizing an existing application. Several of these were
described in the Checklist Section. Tools to create a CI/CD
pipeline are described there as well.

Many monolithic apps include Java code. Before Java SE
10, which came out in 2018, containerizing Java code was
problematic. Running Java inside a container is no longer a
problem—one less thing to worry about.

The decision to move an application comes down to
three factors: value, risk and time.

The value of Kubernetes for development teams is the
subject of this book, but it’s up to you to evaluate each
application to understand the potential benefits for that
application.

Migrating an application to a new platform always
entails technical risk and cost. Kubernetes is young as IT
technologies go, as are the associated tools.

The migration effort can take significant time on the part
of developers and operators.

Before you jump in, look for ways to concretely measure
the gained value, understand the amount of risk and
determine how much time you can afford to spend.

Should I move my application to Kubernetes?

Lumen® Edge Private Cloud with VMware Tanzu™

For Developers

Breaking your application into pieces

Of course, it may be possible to run your monolithic
application on Kubernetes in a single container, and you may
start out that way, but the real goal is usually to decompose
your application into logical pieces (microservices) that
fit nicely into Kubernetes and allow you to parallelize
continuing development activities with more clearly defined
areas of responsibility.

Every application is different, and only you can decide
where the dividing lines should be drawn. One guideline is
to consider the network as the new application interface.
Any time an application transfers large, complete data
structures, that’s a good indicator of a possible break point.

If you’re just not sure where to begin breaking up your
application, the big three application components—user
interface, data access layer, and data store—are always good
starting points.

If your application relies on a back-end database as its data
store—maybe SQL Server or Oracle running in a VM or on
bare metal—these databases can now be containerized.
There is also a variety of open-source alternatives that are
amenable to containerization.

12

Migration

Migrating an application to Kubernetes is in many respects
the same as every other application migration you’ve
ever been involved with. You have to consider how much
downtime will occur during the migration and protect
against data loss. There are almost always unforeseen
problems that arise. Then you have to decide what the
whole migration process will look like. Do you do an A/B
deployment? A DNS rollover? All those decisions have to be
made and orchestrated by humans.

One of the biggest concerns when you’re migrating a
monolithic application is migrating state information. One
option is to leave the state information alone. If you’re
dealing with a back-end database, you may decide to leave
it as is. The drawback with that is it can leave you straddling
two worlds, leaving you with a fragmented system. An
alternative, as mentioned in the previous section, is to
containerize the database as well so that everything you
depend on runs under Kubernetes. Naturally, you may
decide to migrate the front-end application first and tackle
the database later.

Data accessData access

Data storeData store

User interfaceUser interface

Lumen® Edge Private Cloud with VMware Tanzu™

For Developers

Management

A final important consideration is how you will manage your
application stack once it’s running under Kubernetes. As
you’ve already learned, Operators are becoming a preferred
way for managing domain-specific knowledge to simplify
managing your application under Kubernetes, but that
may represent a significant effort in terms of learning and
coding.

Whether you use an Operator or not, it’s important to note
that the Kubernetes environment is likely to be significantly
different than the environment your application came from.
That means things like backup, logging and monitoring are
all going to be difficult. Plenty of open-source solutions exist
in all these areas, and Kubernetes has the added advantage
of being built from the core for resiliency with liveness and
readiness probes and other health checks.

13

How to get started

The good news is, if you’re migrating a monolithic
application today, lots of people have gone before you. Do
everything you can to learn from their mistakes—instead of
making them yourself. There are plenty of good writeups
on ways teams have succeeded—and failed. For example,
GitHub has a fairly detailed blog on its approach to
migrating the applications that run github.com and api.
github.com. A little searching is likely to turn up examples
that are relevant to your situation.

ApplicationApplication

Data storeData store

ManagementManagement

HardwareHardware

DataData Managed by Managed by
KubernetesKubernetes

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://github.blog/2017-08-16-kubernetes-at-github/

Lumen® Edge Private Cloud with VMware Tanzu™

For Developers

Best Practices for Cloud Native
Apps

The great thing about taking on the migration of a legacy
application as one of your first Kubernetes projects is that it
can really clarify your thinking about what not to do when it
comes to developing cloud native applications from scratch.
That hard-won knowledge may serve you well. Either way,
here are some additional guidelines to help you get your
greenfield efforts off the ground with minimal pain.

 Find the right tools

Taking the time to identify the right tools will help you get
started on the right foot. The earlier Developer’s Checklist
introduced three Kubernetes development tools: Draft,
Skaffold, and Garden. Choosing one of these or a similar
Kubernetes-focused tool will help you start out on the
right foot and avoid wasting too much time while you gain
familiarity with Kubernetes.

 Use the patterns

Kubernetes application design patterns are different than
for other environments. If you’re architecting applications
for Kubernetes, it’s extremely useful to understand and use
established patterns whenever possible. This Usenix paper
from Kubernetes co-founder Brendan Burns introduces
many of the common patterns.

 Take full advantage of operators

If the application you’re building is stateful, you should
strongly consider whether you need to create an operator.
To refresh your memory, Operators encapsulate the
application-specific logic necessary for data protection, high
availability, and other management functions. As you think
about Operators, remember that open-source Operators
already exist for common databases and other services you
may be using with your application. You may be able to use
these as is or modify them to suit your needs..

 Engage with the community

If you’re only going to follow one best practice, it should be
this one: engage with the Kubernetes community. One of
the things that differentiates Kubernetes from many other
open-source projects is the vibrancy of the community
around it. No matter what problem you’re trying to solve,
chances are good that there is someone out there who’s
either already solved it or is working to solve the same
challenge.

14

https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_burns.pdf
https://kubernetes.io/community/

Lumen® Edge Private Cloud with VMware Tanzu™

For Developers

Kube Academy
KubeAcademy provides an accessible learning path to
advance your skill set, regardless of where you are on
your Kubernetes journey. Courses are designed and
delivered by Kubernetes experts, for free.

If you’re a developer starting out with Kubernetes, the most
important thing is to get started. Use the resources links in
this eBook to learn more, watch videos, and engage with
your peers online. For in-person opportunities to connect,
find local Kubernetes meetups in your area.

Consider downloading one of the development tools
mentioned earlier and kick the tires, or install minikube on
your local machine to get more familiar with Kubernetes. In
addition, there are a variety of resources for everyone on
the Kubernetes journey:

And be sure and follow @LumenTechCo, @VMware, and @
VMwareTanzu on Twitter to keep up with all the latest cloud
native developments.

Need help deciding how Tanzu Kubernetes is the right
solution for you?

Explore Lumen solutions or schedule an expert consultation
at https://www.lumen.com/en-us/hybrid-it-cloud/private-
cloud/vmware-tanzu.html

What Should I Do Next?

15

Cloud Native Apps Blog
Read our regular blog to find out the latest. Posts cover
diverse topics and new blogs are posted regularly.

Watch a webinar on Cluster API
Learn about Cluster API, how it works, its current state,
and why it’s crucial for the future of Kubernetes.

https://kube.academy/
https://kubernetes.io/community/
https://kubernetes.io/community/
https://kubernetes.io/community/#events
https://github.com/kubernetes/minikube
https://twitter.com/lumentechco
https://twitter.com/VMware
https://twitter.com/VMwareTanzu
https://twitter.com/VMwareTanzu
https://www.lumen.com/en-us/hybrid-it-cloud/private-cloud/vmware-tanzu.html
https://www.lumen.com/en-us/hybrid-it-cloud/private-cloud/vmware-tanzu.html
https://blogs.vmware.com/cloudnative/
https://blogs.vmware.com/cloudnative/
https://www.youtube.com/watch?v=sCD50fO95hI

